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n mass spectrometry (TIMS) in
nuclear science and technology – a review

Suresh K. Aggarwal†

The advances which have taken place during the last four decades in the instrumentation and applications of

thermal ionisation mass spectrometry (TIMS) particularly of relevance to nuclear science and technology are

highlighted. These include the measurements at different stages of the nuclear fuel cycle including nuclear

material accounting, nuclear safeguards and nuclear forensics. The present day availability of fully automated

TIMS instruments equipped with multi Faraday cup detectors has enhanced the capabilities of providing

answers to many of the previous un-solved problems, but at the same time, these instruments are being

treated as magic black boxes by operators performing routine analysis. The advances in the

instrumentation as well as in the software available with the present TIMS machines allow us to venture

into hitherto unexplored areas of R&D including the precise and accurate determination of ultra-trace

amounts of different isotopes. TIMS along with isotope dilution will continue to be a gold standard and

reference analytical method for various applications in nuclear science. MC-ICP-MS will play

a complementary role to the present TIMS measurements, especially for routine analysis of actinides at

different stages of nuclear fuel fabrication, burn-up determination and at the reprocessing plants.
1. Introduction

Mass spectrometry (MS) is a versatile analytical tool for high
precision and accuracy in the determination of isotopic ratios
and concentrations. The inherent capabilities like high sensi-
tivity and applicability to all the elements of the periodic table
as well as for large molecules like proteins make these
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With the growing world population, increasing demand for
electricity, ever-growing concern of environmental greenhouse
effect from fossil fuels and renewed interest in the utilisation of
nuclear energy, mass spectrometry will play an increasing role
at various stages of nuclear fuel cycle including safeguards,
nuclear material accounting, environmental monitoring, and
nuclear forensics. A variety of mass spectrometric techniques
have to be used to meet the challenges of the nuclear science
and technology in future. The different mass spectrometric
techniques include TIMS, gas source electron impact ionisation
mass spectrometry (GS-EIMS), gas chromatography-mass spec-
trometry (GC-MS), glow discharge mass spectrometry (GDMS),
inductively coupled plasma source mass spectrometry (ICPMS),
SIMS, knudsen effusion cell mass spectrometry (KCMS), reso-
nance ionisation mass spectrometry (RIMS), accelerator mass
spectrometry (AMS), electrospray ionisation mass spectrometry
(ESI-MS), etc. These MS techniques are used to obtain highly
precise and accurate data on the isotope-amount ratios,
concentration (amount) at bulk, minor, trace and ultra-trace
levels, and speciation of different elements like hydrogen,
lithium, boron, lanthanides (La, Ce, Nd, Sm, Gd, etc.) and
actinides (Th, U, Pu, Am, Cm, etc.) present in different matrices
including fuel materials, irradiated fuel, dissolver solution at
the reprocessing plant, environmental samples (biological,
geological, food, etc.) and nuclear forensic samples. Amongst
the large number of mass spectrometric techniques mentioned
above, TIMS has been internationally recognised as the gold
standard for obtaining data on the isotope amount ratios and
concentrations of different elements, in particular U and Pu, in
nuclear fuel samples. This manuscript gives a brief introduction
to TIMS and presents its application in nuclear science and
technology. In this review, the important applications of TIMS
in nuclear industry are summarized. An attempt is made to
highlight the major developments which have taken place
during the present decade. A few thoughts are also included for
the future outlook of this important and invaluable analytical
tool. Since Th, U and Pu are the important actinide elements in
nuclear science and technology, most of the discussion focuses
on these three actinides. Though a number of excellent books1–8

and review articles9–16 on inorganic mass spectrometry, acti-
nides and radioactive elements analysis are available, there is
no comprehensive review on TIMS for nuclear science and
technology. It may be noted that laser ablation ICPMS and SIMS
play an important role in nuclear science and technology for the
direct micro-analysis of solids, but these are beyond the scope
of this review and, therefore, will not be discussed in this
review.
2. Principle of thermal ionisation
mass spectrometry (TIMS)

Thermal ionisation mass spectrometry involves vaporisation
and ionisation of the element loaded and dried on the lament
surface by resistive heating. The lament materials generally
used are high purity rhenium, tantalum, tungsten and plat-
inum. The lament material should have high melting point as
This journal is © The Royal Society of Chemistry 2016
well as high electronic work function since the formation of
positive ions in TIMS is based on the Saha–Langmuir equation,
given below, which includes an exponential of the difference
between the work function (4) of the lament material and
ionisation potential (I) of the element.

nþ
n0
feð4�IÞ=kT

Generally positive atomic or molecular ions are employed for
TIMS analysis of elements of interest in nuclear science and
technology. At times, the negative ions are also employed e.g. for
boron, BO2

� ion gives the highest sensitivity in negative TIMS
(N-TIMS)17–19 compared to Na2BO2

+, Rb2BO2
+ or Cs2BO2

+ ions in
positive TIMS (P-TIMS).20–22 The generation of negative ions in
surface ionisation requires high electron affinity of the element
or molecule and low work function of the lament material. A
single or a multiple (double or triple) lament assembly is
used.17,21,23 The use of double or triple lament assembly allows
decoupling of the evaporation and ionization processes and
gives exibility to the analyst to adjust lament temperatures to
carry out oligo-element analysis from the same lament
assembly and also to control the formation of atomic and/or
molecular ions (see below for U and Pu) to account for the
isobaric interferences using interfering element correction
(IEC) methodology. About 0.5 to 1 mL of the solution in 0.5 to 1
M HNO3 containing 250 ng to 5 mg of the element is transferred
onto the sample lament and dried by passing a current of
about 1 A. Sometimes, ionisation enhancers like silica gel–
phosphoric acid and additives like graphite or silicic acid are
also loaded onto the sample lament to enhance the ionisation
of the particular species of interest (e.g. UO2

+ in U).24 The ions
generated are collimated, accelerated and focused into themass
analyser through an entrance slit. The low energy spread of the
ions generated in thermal ionisation source allows the use of
only magnetic analyser which provides direction focusing. Ions
of different mass to charge ratios travel through the analyser in
different trajectories. These ions, which consist of different
isotopes of a given element, pass through an exit slit and are
detected and collected in a multi-Faraday cup detector system.
All the commercial TIMS systems available these days also
incorporate a secondary electron multiplier (SEM) for
measuring isotope-amounts of minor isotopes leading to ion
currents less than 10�15 A. The gains of the different ampliers
used for various Faraday cups must be determined experimen-
tally and differences, though small, need be accounted for
during the determination of isotope amount ratios. One of the
suppliers (Thermo Fisher Scientic) has invoked the concept of
virtual ampliers where all the ampliers are involved in
measuring each of the isotopes and this takes care of the
differences in the amplier gains. Ion counting systems (e.g.
Daly detector) are also available in the commercial TIMS
systems. The conversion gain ratio of SEM to Faraday cup needs
to be determined when using both the detectors in an isotope
amount-ratio experiment e.g. if 236U is measured on SEM or
Daly and other U isotopes including 234U are measured using
Faraday cups.
Anal. Methods, 2016, 8, 942–957 | 943
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For minor isotope amount ratios e.g. 230Th with an abun-
dance of less than 1 ppm, the ion beam aer the magnetic
analyser passes through another energy lter (retarding poten-
tial quadrupole RPQ in Thermo Fisher Scientic TRITON PLUS
or wide aperture retarding potential (WARP) lter in Isotopx
PHOENIX) to improve the abundance sensitivity from 1 ppm to
about 10 ppb, measured at mass 237 with respect to m/z of 238.
The advent of these energy lters has allowed the accurate
determination of isotope amounts with extremely low abun-
dances. It may be noted that presently, all the three commer-
cially available TIMS instruments are with a sector magnetic
analyser having an extended geometry. An attempt was made by
Thermo Fisher Scientic quite some time back to incorporate
a quadrupole analyser with a thermal ionisation source, but this
option met with a limited success and was discontinued.

The element to be analysed by TIMS should be in a chemi-
cally pure form to eliminate the suppressive effect of ion
formation by other impurity elements present in the sample.
This requirement oen demands the chemical separation and
purication of the samples. This is usually done with anion
exchange resin, which absorbs both U and Pu, and trivalent
actinides and other ssion products are washed out with 7 M
HNO3. Uranium and Pu are sequentially eluted from the ion
exchange column with 3 M HNO3 and about 0.3 M HNO3,
respectively. Extraction chromatography with commercially
available resins (TEVA, UTEVA and TRU from EiChrom Inc.,
Darien, Illinois, USA) is useful for various samples and is quite
popular these days.25,26 In fact, this separation chemistry is one
of the bottlenecks discouraging the use of TIMS in earth-
sciences and biological elds where the MC-ICP-MS instru-
ments have been widely accepted and are being used routinely.
However, for the analysis of radioactive elements like Pu, Am,
Cm, etc., TIMS instruments still remain a work-horse and a gold
standard in view of their high sensitivity, absence of any
memory or carry over effect and elimination of the risk of
generating any radioactive vapors as in ICP-MS. But MC-ICPMS
is quite popular for the determination of trace amounts of
actinides in biological and environmental samples.

In TIMS, during sample loading on the lament, ionisation
enhancers are also used sometimes to perform mass spectro-
metric analysis from samples (e.g. environmental) containing
small amounts of U or Pu.24,27 As an example, carbon in some
form or the other (e.g. graphite) is added to the sample lament
for isotopic analysis of small amounts of uranium. It was shown
by extensive studies performed using X-ray photoelectron
spectroscopy (XPS), scanning electron microscopy, and KCMS
that the formation of U+ ions proceeds via the formation of
uranium carbide.28 A surface ionisation-diffusion type ionisa-
tion source (SID) using a rhenium lament overplated with
platinum was also shown to give high sensitivity for Pu and
Np.29,30 For Pu, a sensitivity of 0.5 to 2 ng with precision and
accuracy of 0.07% was quoted and a detection limit of 105 atoms
of neptunium was determined using the SID source. For
thorium, an ionisation efficiency of 4% was reported using the
carburised lament and employing charge collection in TIMS.31

The combination of silicic acid and dilute phosphoric acid was
found to produce a strong and stable ion beam of UO2

+ in TIMS
944 | Anal. Methods, 2016, 8, 942–957
analysis of natural samples.24 A hot cavity source for improving
the surface ionisation efficiency is also proposed.32,33
3. Isotope dilution – thermal
ionisation mass spectrometry (ID-
TIMS)

Isotope dilution in TIMS is used to determine the concentration
or total amount of an element present in a given matrix or
solution.12 It involves the addition of a known amount of the
pre-calibrated spike solution of enriched stable or long-lived
isotope of the same element, whose concentration needs to be
determined, to the unknown solution or solid. Subsequently
homogeneous mixing between the sample and the spike
isotopes is ensured e.g. by a redox treatment in case of Pu. This
is followed by chemical separation, if required. Knowing the
isotopic composition of the element in the unknown sample
and the spike, the concentration of the element in the spike
solution, the weights or volumes of the sample and the spike
solution mixed, the concentration of the element in the
unknown sample can be determined. Since the determination
of concentration or amount in isotope dilution mass spec-
trometry (IDMS) depends only upon the change in isotope-
amount ratio, the data are not affected by incomplete recovery
of the analyte in chemical separation and purication. However,
it is recommended to adopt a separation and purication
procedure with high yield to minimise the isotope effects, if any,
during chemical steps, particularly when dealing with light
elements like boron, magnesium, etc. This is also important in
samples containing very small amounts of the element to be
determined. In view of the inherent advantages of IDMS,
isotope dilution-thermal ionisation mass spectrometry (ID-
TIMS) is termed as a denitive analytical methodology and is
used as a reference technique to calibrate other analytical
methodologies.5

The choice of the spike isotope of an element is governed by
many factors. The spike isotope should preferably be absent or
least abundant in the given sample. It should not have any
isobaric interference from the adjacent or other elements. It
should be easily available and should not be very expensive. It
should preferably be in the same chemical form as the element
in the sample for easy homogenisation or mixing. For U and Pu,
the most commonly used spikes are 233U and 242Pu, respec-
tively, since 238U and 239Pu are the two isotopes which have the
highest abundances in most of the nuclear fuel samples of U
and Pu.34 Alternate spiking mechanisms for U had been tried
and proven to work.35 These authors have shown that U-IDMS
works with spikes other than 233U. In the recent years, the233U
and 242Pu spikes have been replaced with 235U (about 20%
enriched) and 239Pu (about 99 atom%), respectively. A mixture
of these two spikes, called large size dried (LSD) spike, is
routinely employed by International Atomic Energy Agency
(IAEA), at Seibersdorf, Vienna for nuclear safeguards applica-
tions at the reprocessing plants.36–38 This spike mixture was
selected due to the relatively low cost of 239Pu compared to that
of enriched 242Pu, and this spike eliminated the need to dilute
This journal is © The Royal Society of Chemistry 2016
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the solution at the reprocessing plant by the operator/inspector.
A number of studies are reported in the literature to evaluate
and compare the use of different Pu isotopes as spikes in ID-
TIMS of Pu. In our laboratory, it was shown that Pu with 239Pu
about 70 atom% (e.g. from pressurised heavy water reactors
PHWRs) can be used as a spike for determining the Pu
concentration in samples with 239Pu about 95 atom% (e.g. Pu
from research reactors) and vice versa. This development to use
indigenously available spikes circumvented the problem of non-
availability of enriched 242Pu from overseas laboratories.

The spike solutions are calibrated/certied using reverse
isotope dilution TIMS using a chemical assay standard. A high
purity metal characterised for impurities and isotopic compo-
sition is the ideal choice for this chemical assay reference
material. A comparative evaluation of different spikes viz. 239Pu,
240Pu and 242Pu was reported for Pu concentration determina-
tion by ID-TIMS.39–41 An inter-calibration campaign was also
taken up using different selected Pu spike isotopic reference
materials viz. 239Pu, 240Pu, 242Pu and LSD.42 In case of Pu, the
radioactive decay of Pu isotopes (mainly 241Pu, 238Pu) requires
the certied values of Pu concentration in spike to be corrected
regularly. This correction adds to measurement uncertainty in
the Pu concentration of unknown Pu solution and this obvi-
ously would depend on the isotopic composition of Pu in the
spike. Moreover, in case of Pu, there are chances of Pu spike
being unstable due to radiolysis and polymerisation which
requires a suitable chemical treatment for isotopic homogeni-
sation of Pu isotopes between the sample and the spike solu-
tions. These problems are not very serious in case of Th and U.

It may be mentioned that mono-isotopic elements cannot be
determined by TIMS since evaporation and ionisation efficiency
varies signicantly from one lament loading to another and
also from one element to another element. Efforts are required
to prepare spikes for all the elements to be determined by ID-
TIMS. For example, 229Th, 236Np and 243Am have been used as
spikes in ID-TIMS for determining 232Th, 237Np and 241Am,
respectively, in nuclear fuel samples e.g. in dissolver solution of
irradiated fuel. Recently, ICP-MS has been proposed43 to
produce ultra-high purity single isotopes or tailored isotope
mixtures of high purity (>99.99%) in spite of low deposition
rates (about 10 ng h�1).

4. Isotope fractionation in TIMS

It is well known to the practitioners of TIMS that the evapora-
tion process in thermal or surface ionisation source leads to
preferential evaporation of the lighter isotope and the process is
known as normal fractionation. This delineates into change
(decrease) in the isotope ratio of the lighter isotope to that of the
heavier isotope with time, during thermal ionisation mass
spectrometric analysis. It is a mass-dependent fractionation
phenomenon which depends upon a number of parameters like
mass difference between the isotopes of an element, amount
loaded on the evaporation lament, chemical form of the
element, lament assembly (single or multiple), heating
temperatures of the laments and ionisation enhancers added
on to the lament during sample loading, and rate of
This journal is © The Royal Society of Chemistry 2016
evaporation. Thus it is difficult to reproduce all these parame-
ters from one TIMS analysis to the next. Therefore, isotope
fractionation is recognised as a source of variable systematic
error and this variation contributes to uncertainty in isotope
amount ratio measurements.

In the early days of TIMS (during 1970s), the TIMS instru-
ments were available with a single Faraday cup and an SEM. It
was customary to rst optimise the different parameters for
achieving a stable ion beam and then evaluate the mass
discrimination factor for each element by analysing the isotopic
reference material. This approach was known as external nor-
malisation and could yield precision and accuracy of about
0.5% on different isotope ratios of U and Pu. This approach is
also referred to as the conventional method of MS analysis and
involves acquisition of data for a given number of blocks
(typically 3 or 5), with each block of 10–12 scans. The advent of
multi-Faraday cup collectors where ion beams of different
isotopes could be simultaneously collected revolutionised the
TIMS applications and signicantly improved the precision and
accuracy of data on isotope ratios.44 This also reduced the time
of analysis particularly for elements like Nd with a large number
of isotopes. A number of methodologies have been developed in
the past as well as in recent years to minimise the variable
systematic error arising from isotope fractionation.45–52 These
can be classied into two approaches: one to use internal nor-
malisation either based on an invariant isotope amount ratio of
two isotopes of the element (e.g. in Nd) or by external addition
of a pre-calibrated double spike (e.g. 233U + 236U for U, 242Pu +
244Pu for Pu) on the lament during sample loading,45,46 and
secondly with total evaporation (TE) and ion current integra-
tion.46–53 The internal normalisation approach can only be used
for elements with at least four stable or long-lived isotopes and
cannot be applied to elements like Li, B with only two isotopes.
Also the methodology of double spike cannot be adopted by
various laboratories worldwide due to the high cost and limited
availability of the enriched isotopes as well as inaccessibility to
these isotopes due to restrictions in supplies. Therefore, many
of the nuclear laboratories (IAEA, Vienna; IRMM, Belgium; NBL,
USA; ITU, Germany) developed and adopted the TE approach to
circumvent the problem of isotope fractionation.46–53 This TE
approach minimises the isotope fractionation effects because
the ion currents are integrated till the sample is completely
exhausted from the sample lament. TE helps in improving the
repeatability of isotope amount ratio data in any laboratory but
does not fully account for isotope fractionation since the overall
efficiency i.e. ions detected per atom loaded on the lament is
limited to only 0.03% to 0.10% for U and Pu.53 Presently, TE and
double spike have both been used by a few of the laboratories
involved in preparing and characterising certied isotope
amount ratio reference materials with a view to achieve overall
uncertainties of 0.01 to 0.02% in the certied isotope amount
ratios.52–56

The total evaporation method uses the double lament (high
purity zone rened rhenium) assembly to decouple evaporation
and ionization processes. The two laments -viz., ionisation
lament and evaporation (sample) lament are heated inde-
pendently. Firstly, the ionisation lament is heated to a current
Anal. Methods, 2016, 8, 942–957 | 945
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of 5–5.5 A to obtain sufficient signal for 187Re (200–500 mV) and
this is used for focusing and peak-centering. This is followed by
controlled heating of the sample lament to obtain 50–100 mV
signal of the major uranium isotope. The focusing and the peak
centring are checked once again on the U isotope peak. This is
followed by data acquisition when the pre-dened summed
signal intensity of U isotopes is attained. Heating the sample
lament and integration of the ion current of each isotope is
continued under computer control till the sample is completely
consumed or the signal intensity drops to a pre-dened value
(50 mV). This TE approach is quite satisfactory for major
abundant isotopes but is of limited success for the minor
abundant isotopes (e.g. 234U, 236U in U). The data obtained for
minor isotopes like 234U and 236U in U TIMS analysis were
observed to be positively biased by TE approach. This limitation
was attributed to the fact that these minor isotope peaks were
not corrected for peak tailings (abundance sensitivity of TIMS),
and also any changes in peak centring and focusing due to
heating of the sample lament could not be corrected for
during data acquisition in TE. In addition, internal calibration
of SEM versus Faraday cup was also not possible. A modied
total evaporation (MTE) method was, therefore, developed
which involves the interruption of the total evaporation process
regularly to allow for correction due to background from peak
tailing.54–58 This interruption is also used to check for peak
centring as well as ion-beam re-focusing due to the increased
sample lament temperature. These modications have
signicantly improved the accuracy and measurement uncer-
tainty on the minor isotope abundances. Recently, natural U
metal59 and depleted U metal60 were characterized by MTE.
These are some of the characterizations that rmly established
the advantages of the MTE method that also proved that
improvement in the quality of the minor ratio data is achieved
without compromising the quality of the major ratio data, in
comparison to TE. One of the commercial instrument manu-
facturers (Thermo Fisher Scientic) has now incorporated
soware for MTE in their system. However, one of the limita-
tions of MTE is that it requires a large amount (say 5 mg) of the
element to be loaded on the lament compared to 250–500 ng of
U generally used in the TE method. Also the analysis time
increases signicantly in MTE due to regular interruptions for
10% of the time. The MTE methodology has been successfully
used in recent years for the certication of minor as well as
major isotopes for the isotopic reference materials of uranium.
However, this MTE methodology may not be used regularly for
the routine analytical work due to the increased analysis time,
lower throughput, large amount of the sample to be loaded on
the lament and due to the routine requirement of data on
major abundant isotopes of U and Pu.
5. Applications of TIMS in nuclear fuel
cycle
5.1. Isotopic composition and concentration determination

Data on the isotope amount ratios of U isotopes are needed at
the 235U enrichment facilities. Though it is determined
946 | Anal. Methods, 2016, 8, 942–957
routinely by GS-EIMS using UF6 gas and measuring the ion
currents of UF5

+ at m/z 330 and 333, TIMS is employed to check
for the memory effects in GS-EIMS as well as for characterising
the working standards to be used for GS-EIMS. Also when small
changes in the 235U/238U amount ratios need be measured
during the initial stages of the R&D work by various enrichment
methodologies, TIMS is highly useful though MC-ICPMS can
also meet this requirement.61 The data on 235U, 239Pu and 241Pu
in U and Pu bearing nuclear fuels are obtained by TIMS to
certify the ssile content as a part of chemical quality assurance
of fuels. In the irradiated fuel, data on the isotopic composition
and concentrations of U and Pu are determined to calculate the
burn-up from changes in the heavy element isotope amount
ratios as well as for nuclear material accounting at the reproc-
essing plants.

A simple method using a mixed spike of 233U + 235U was
developed to determine simultaneously the n(235U)/n(238U)
amount ratio as well as the total amount of U present in the
sample from the same lament loading.62 For the same reason,
during initial stages of Pu ID-TIMS work, 244Pu was proposed
and used as a spike, which was discontinued probably due to its
high cost and limited availability. Studies were also reported for
the analysis of U and Pu from the same lament loading63–65 as
well as for determining traces of U in Pu.66

Studies are reported on the ion source chemistry of U + Pu67

and Th + U68 using a double rhenium lament and by preparing
synthetic mixtures of the two elements, by a thermal ionisation
source. It was shown that UO+ ions are produced at lower ion-
isation and vaporisation lament temperatures compared to U+,
Pu+ and PuO+. This observation along with interfering element
correction (IEC) methodology using 235U as a monitor isotope
was exploited for developing a novel methodology for the
accurate determination of 238Pu in Pu samples circumventing
the ubiquitous isobaric interference of 238U during TIMS anal-
ysis.69 The methodology was used to prepare and characterise
the 238Pu working reference materials which are not available to
nuclear community throughout the world.70,71 Recently, the
same methodology has been used by a Group from Korea using
233U as a monitor isotope to determine 238Pu in Pu samples by
TIMS.72 In the case of U–Th ion source chemistry, it was
observed that the presence of thorium oxide on the lament
enhances the stability of UO+ in TIMS. Further, it was stated that
for TIMS analysis of Th, ThO+ ion is preferred whereas for TIMS
analysis of U, either U+ or UO+ ion can be used.

ID-TIMS was also employed for the determination of Zr in
alloy fuels73 as well as recently in the irradiated fuel.74 TIMS has
also been applied to the determination of U, Th and Ra isotope
ratios with high dynamic range and U minor isotope amount
ratios with a secondary electron multiplier.75,76
5.2. Burn-up determination of irradiated nuclear fuels

TIMS has been used for more than 4 decades and is still used at
present to obtain the most reliable experimental data on the
burn-up of the irradiated fuels as well on the depletion and
build-up of U and Pu isotopes.34,77–81 These data along with
concentrations of U, Pu and Nd (stable 148Nd used as a burn-up
This journal is © The Royal Society of Chemistry 2016
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monitor) determined by triple spike ID-TIMS provide data on
the burn-up. Burn-up can be calculated either from changes in
the heavy element isotopic composition or by determining the
total number of ssions using a suitable burn-up monitor e.g.
148Nd for U + Pu fuels. The triple spike ID-TIMS provides the
best possible data on burn up with minimum uncertainty.
These experimental data are very useful to check and develop
computer codes for the build-up and depletion of different
heavy element isotope amounts as well as for reactor fuel
management during reactor operation.

Burn-up studies are reported for irradiated fuels of natural U,
MOX fuels containing both natural U and Pu as well as for
thoria fuel bundles irradiated in research reactors.34,77–79

Recently, burn-up was reported for carbide fuels and for an
experimental fuel of 233U + 239Pu where 145Nd + 146Nd together
were used as a burn-up monitor.80,81 It is important to ensure
that U blanks are checked and kept under control when deter-
mining the isotopic composition of U from irradiated Th since
in this case, 233U is the major isotope and a small amount of
natural U introduced from reagents, apparatus or laboratory
atmosphere will give erroneous data on the isotope amounts of
different U isotopes.
5.3. Accountability of Pu and U at reprocessing plants

Determination of total Pu and U in the input accountability tank
of a reprocessing plant is performed by the volume-concentra-
tion method where the concentrations of Pu and U are deter-
mined by ID-TIMS in an accurately measured aliquot of the
solution. This involves uncertainties in the total volume or
weight of solution in the tank and the aliquot size. A novel
approach using a suitable tracer was developed and tried by
several researchers.82–100 This involves the addition of a known
amount of tracer element to the input accountability tank,
suitable homogenisation and mixing of the tracer with the
solution in the tank and taking any unknown aliquot from the
solution. By determining tracer to Pu and tracer to U amount
ratios by ID-TIMS, and knowing accurately the amount of tracer
added, the total amount of Pu and U in the tank can be deter-
mined. This methodology eliminates the need to know the total
volume of solution in the tank as well as the aliquot size. In
addition, independent verication of volume/weight calibration
of the tank, if required, is possible.

A number of tracers were proposed and tried starting from
Li, Mg, Pb, Nd, Gd, Lu, Er, U and deuterium. The nal choice of
the tracer is governed by the cost and availability of the enriched
isotope to be used as a spike in ID-TIMS, accuracy in the
measurement of isotope ratios by TIMS and the blank levels in
the dissolver solution of irradiated fuel. To circumvent the
problem of blank build up, when using the same tracer
repeatedly, it was proposed to employ two tracers alternately e.g.
in the MAGTRAP (Magnesium Tracer for input Accountability of
Pu) and LEADTRAP (Lead Tracer for input Accountability of
Plutonium), during studies carried out by us at Tarapur.84,85

Subsequently, the European Community tried different tracers
(Nd, Lu and Pb) in RITCEX (Reprocessing Input Tank Calibra-
tion Exercise) at Eurochemie Reprocessing Plant with different
This journal is © The Royal Society of Chemistry 2016
tracers yielding similar results.89–91,95 Another exercise CALDEX
(Calibration Demonstration Exercise) was also taken up in the
framework of European collaboration and evaluation of the
tracers methodology.98,100 Due to the high cost of natural Lu and
its enriched isotope 176Lu to be used as a spike for ID-TIMS
experiments, Er was considered to be an economically viable
tracer for input accountability experiments. It is important to
design the input accountability tank of a suitable shape allow-
ing easy accessibility of the tracer addition point followed by
homogenisation of the tracer.

6. Determination of half-lives

TIMS has played an important role in the determination of
precise and accurate half-life values of different trans-actinium
isotopes.94–115 A number of methods viz. parent decay, daughter
growth, specic activity and relative activity were used to
experimentally re-determine the half-life values and minimise
the uncertainties in the data.

Half-life of 235Np was determined by the parent decay
method by measuring the changes in the n(235Np)/n(236Np) ratio
periodically for about 630 days, using TIMS.102 The 235Np/236Np
isotope amount ratio decreased from 4.342 to 1.445 in 630 days
and a half-life value of 396.1 � 1.2 days was calculated. It was
predicted that this methodology may be used, in future, to
determine half-lives of radionuclides upto about 70 years, since
this would give a change of about 1% per year in the isotope
amount ratio. Aggarwal et al.103,104 determined the beta decay
half-life of 241Pu (14.4 years) using the same approach by
preparing a synthetic mixture of Pu isotopes with almost equal
amounts of 239Pu, 240Pu, 241Pu and 242Pu. Isotope amount ratios
n(241Pu)/n(239Pu), n(241Pu)/n(240Pu) and n(241Pu)/n(242Pu) were
determined periodically by TIMS. Further these ratios were
internally normalised (double ratio or ratio of ratios method)
with respect to n(240Pu)/n(242Pu), n(240Pu)/n(239Pu), n(241Pu)/
n(240Pu), respectively, to account for any differences due to the
variable isotope fractionation pattern over the entire period
(about 5 years) of the experiment. Recently, Wellum et al.105,106

reported a new measurement for the half-life of 241Pu (14.325 �
0.024 years) by employing the data on isotope amount ratios
determined over a period of about 30 years. Enriched 241Pu (92.7
atom%) was used in this work which decreased to about 74.5
atom% aer 30 years. The availability of present generation
high sensitivity TIMS instruments holds the potential to employ
this method to re-determine precise and accurate half-lives of
other radioactive isotopes e.g. 238Pu (87.7 years), 244Cm (18
years), 232U (70 years), etc. which are of interest in nuclear
science and technology. It is advisable to follow the decay over
a period of more than one half-life to conrm the absence of any
isobaric interference.

The daughter growth method107 was used to determine the
half-lives of 239Pu and 241Pu. The in-growth of daughter nuclides
viz. 235U from alpha decay of 239Pu and 241Am from beta decay of
241Pu was also determined by isotope dilution-TIMS. This
approach also demands the determination of daughter nuclide
initially present (at zero time) in the solution of the parent
radio-nuclide.
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The specic activity method108 depends upon the availability
of highly enriched isotope of the radionuclide with high
radiochemical purity. The number of atoms present in a given
mass are determined by ID-TIMS or can be known gravimetri-
cally if the radionuclide is well characterised with respect to its
purity, stoichiometry, etc. This method has been used for
determining the half-lives of several U, Pu, and Am isotopes. In
this method, the total number of disintegrations (radio-activity)
per unit mass is obtained by using a suitable radiometric
method like alpha counting.110

The relative activity method is based on using another
isotope of the same element as a reference isotope and deter-
mining the isotope amount ratio and the alpha activity ratio of
the two isotopes by TIMS and alpha spectrometry, respectively.
The methodology has been successfully applied to the re-
determination of half-lives of 242Pu,109 232U110 and recently for
243Am111 and 244Pu.112 As an example, the two different lots of
highly enriched 244Pu available at International Atomic Energy
Agency's (IAEA) laboratories at Seibersdorf were used, without
mixing with the other Pu isotopes, for precise and accurate
determination of the half-life of 244Pu taking both 239Pu and
242Pu, already present in the enriched 244Pu, as reference
isotopes in the relative activity method. This methodology is
very useful to re-determine precise and accurate half-lives of
different transactinium isotopes of an element e.g. the long-
lived isotopes of Cm. A novel double dilution approach was
developed by Aggarwal et al.113 during the initial stages of using
the relative activity method, to obtain the isotope amount ratio
as well as the alpha activity ratio close to unity in the synthetic
mixture, with an objective to determine them with high preci-
sion and accuracy.

It may be noted that the different approaches mentioned
above have also been used for precise and accurate determi-
nation of the half-lives of many other radioactive isotopes useful
in geo-chronology and other elds. Cheng et al.114 reported,
using TIMS, the half-lives of 234U (245 250 � 490 years) and
230Th (75 690 � 230 years) which are 0.3% and 0.4% higher,
respectively, than the commonly used half-life values for these
isotopes. These were further improved, in terms of precision,
recently in 2013 to 245 620 � 260 years and 75 584 � 110 years
by the same group using MC-ICPMS.115
7. Nuclear safeguards and nuclear
forensics

Nuclear forensics and safeguards have gained lot of importance
aer the Gulf War in 1990 and splitting of the former Soviet
Union.63 International Atomic Energy Agency (IAEA), Vienna is
the prime agency promoting the know-how in this particular
eld. TIMS is only one of the techniques used in addition to
other mass spectrometric techniques like ICP-MS and SIMS.
SIMS is very important for particle analysis of environmental
samples to detect any undeclared activity of the nuclear fuel
cycle. A book on nuclear forensics and several reviews and
popular articles have appeared during the last couple of years
on the growth and development of nuclear forensics.116–127
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TIMS is a unique analytical tool in nuclear forensics to nd
out the origin of the interdicted material and the age of the
material.128–139 The latter means the time elapsed aer the latest
purication of U and/or Pu. Efforts are going on world-wide in
different international laboratories to develop and conrm the
suitability of different methodologies using TIMS to nd out the
accurate age of the old materials. Different parent-daughter
chronological couples e.g. 235U–231Pa, 239Pu–235U, 241Pu–241Am
have been used to validate the analytical methodology.133–136

Efforts are also going on to produce certied referencematerials
of known age. Excellent reviews are available in the literature
unravelling the intricacies involved in nuclear forensics. IAEA
has also been conducting coordinated research programs
(CRPs) for developing expertise in this branch of nuclear
science and technology.

The age of any radioactive sample can be determined by
measuring the daughter/parent ratio as a function of decay
time.120 Since the age of nuclear materials will not exceed a few
decades compared to the long half-lives of radioactive isotopes
of U and Pu, the amounts of daughters grown are quite limited.
This demands chemical separation followed by mass spectro-
metric or radiometric measurements. Age determination of
uranium and plutonium refers to “Model ages” since it is
assumed that (i) complete separation of the daughters was
achieved at the time of initial preparation/purication of the
material and (ii) the system has remained closed aer that. Any
deviation from these two assumptions would lead to erroneous
results on the age. If possible, it is preferred to determine the
age of the material by using two independent chronometers.
Good agreement (concordance) in the data obtained by two
independent radio-chronometers enhances the condence in
the results. In case of disagreement, the lower age is taken since
the initial presence of some of the daughter nuclide would give
a longer age in the calculation.

Isotope ratio measurements on Sr, Nd and Pb present in
uranium ore concentrate or any uranium sample can also be
used to trace the origin of uranium.137,138 This is due to the fact
that there would be small differences in the contents of 87Sr
(daughter of 87Rb), 143Nd (decay product of 147Sm, T1/2 ¼ 1.06 �
1011 years) and radiogenic lead isotopes (viz. 206Pb, 207Pb and
208Pb) arising due to the geological history of the mine. The
measurements require chemical separation of these elements
in the purest form using suitable ion exchange procedures and
highly precise determination of isotopic composition by either
TIMS or multi-collector high resolution inductively coupled
plasma source mass spectrometry (MC-HR-ICPMS).

The 143Nd/144Nd isotope ratio is a useful signature to assess
the origin of uranium ore concentrates.137 This ratio provides
a robust signature since it is less prone to weathering. Signi-
cant differences in the 143Nd/144Nd isotope ratio have been
observed between different uranium mines. This ratio depends
upon the age of the minerals present and the initial Sm/Nd
amount ratio of uranium ore. For determining the 143Nd/144Nd
ratio, the purication of Nd from Ce and Sm needs to be done to
avoid isobaric interferences at Nd mass numbers. The
143Nd/144Nd isotope ratio was shown to vary from 0.51068 to
0.51470 (1% only) with Sm/Nd amount ratios ranging from 0.17
This journal is © The Royal Society of Chemistry 2016
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to 1.96 in various uranium ores and ore concentrate samples.
This can also be measured with high precision using TIMS or
magnetic sector multi-collector ICPMS.120

The 18O/16O isotope amount ratio in the actinides
compounds is also proposed as a useful indicator for tracing
their origin.139 Small changes in the 18O/16O isotope amount
ratio were observed in uranium oxide samples of different
origins using SIMS and TIMS. The small differences (less than
3%) originated due to variations in the oxygen isotopic content
of air and ground water at various geographical places as well as
chemicals and water used to process the uranium ore into
uranium ore concentrate. TIMS was used to monitor UO+ ions
from solution deposited on the lament for determining
18O/16O isotope amount ratios. The use of magnetic sector SIMS
was also demonstrated for the determination of the 18O/16O
isotope amount ratio in uranium dioxide micro particles using
carbon disks and gold substrates and performing the
measurements on O� ions using Cs+ as the primary ion beam.
8. Environmental and biological
applications

TIMS has been used extensively for the determination of Pu and
U isotopic amount ratios in a large number of environmental,
biological and geological samples.134–138,140–144 However, the
advent of MC-ICP-MS is quite attractive for obtaining these data
in such samples containing less than microgram amounts of U
and Pu. This is mainly because ICP-MS does not require the U
and Pu to be in highly pure form and this eliminates the need to
perform complex chemistry separations and purications. At
the same time, this reduces the time of analysis, providing data
on a large number of routine samples in relatively less time. The
unfortunate accidents of Chernobyl and Fukushima have given
impetus to the development of different mass spectrometric
techniques to provide the data on the isotopic abundances and
amounts of U, Pu and other actinides present in a variety of soil
samples and effluents from accident reactor sites.
9. Other interesting applications of
TIMS

TIMS has been used for determining the ssion yields of stable
isotopes of many elements (e.g. lanthanides) during the thermal
neutron induced ssion of 233U, 235U, 239Pu and 241Pu.

The discovery of natural nuclear reactor (Oklo phenomenon)
in 1972, which was solely due to the consistent small changes
noted by one of the alert scientists (0.717 atom% versus 0.720
atom% of 235U) in samples received from uranium mines from
Gabon Republic in West Africa by a French Company, provided
a lot of opportunity to the users of TIMS to generate useful
data.145 Studies performed showed some regions of the mines
with 235U down to 0.44 atom%. Some regions showed slightly
enriched 235U also which was explained on the basis of alpha
decay of 239Pu formed during nuclear reactor operation. This
natural nuclear reactor was in operation about 2 billion years
ago when the abundance of 235U was about 3 atom%.
This journal is © The Royal Society of Chemistry 2016
Double beta decay half-life of 96Zr was determined by
determining the positive anomaly (i.e. excess) of 96Mo by TIMS
in a zircon sample.146 The data obtained were consistent
(considering correlation between the half-life and the decay
energy) with the double beta decay half-life values determined
previously from the decay of 82Se and 130Te and by measuring
the excess of 82Kr and 130Xe, respectively, by gas source mass
spectrometry.
10. Developments in TIMS
instrumentation and suppliers of TIMS

There are three commercial TIMS instruments available from
three different vendors. These are (i) TRITON PLUS from
Thermo Fisher Scientic, Germany; (ii) PHOENIX from Isotopx,
UK; and (iii) Nu TIMS from Nu Instruments, UK. Each of these
mass spectrometers is equipped with multi Faraday cup detec-
tors that allow simultaneous acquisition of data of various
isotopes (static collection) which eliminates the time dependent
uctuations in the ion currents encountered during measure-
ments in the dynamic mode. The SEM/Daly detector with ion
counting is also available. Analysis and data acquisition using
positive or negative ions is possible. High abundance sensitivity
(10 ppb or 108) necessary to determine accurately the low
abundant isotopes (e.g. 230Th and 236U) is achievable by
including the energy lter options of RPQ orWARP lter. Efforts
are on to explore the usage of ampliers with 1013U resistors
with Faraday cups and the results obtained at Thermo Fisher
Scientic are quite encouraging.147 Table 1 presents a compar-
ison of the salient features of TIMS instruments available from
various vendors.
11. Certified reference materials

Certied reference materials (CRMs) are required to calibrate
the thermal ionization mass spectrometer and also to check
routinely the performance of the system. A variety of CRMs are
available from Institute for Reference Materials and Measure-
ments (IRMM), Geel, Belgium for Th, U, and Pu. These different
reference materials are certied for isotope abundance ratio,
isotope amount content, or element amount content. A few
reference materials are certied for the production date, for age
dating, in nuclear forensics applications. Many of these mate-
rials are prepared by gravimetrically mixing the highly pure and
well-characterized metals or compounds, whereas others are
certied with data from well-calibrated equipments and
techniques.
12. Critical discussion and future
outlook

At the outset, one may feel that the potential applications of
TIMS in nuclear science and technology, summarised in Table
2, have nearly got saturated and nothing exciting needs be done
further. However, a more critical look is warranted to discover
the unknowns. Though accuracy to determine minor isotope-
Anal. Methods, 2016, 8, 942–957 | 949



Table 1 A comparison of salient features of TIMS instruments available from various suppliers

Parameter Thermo Fisher (TRITON Plus) Isotopx (Phoenix) Nu instruments (Nu-TIMS)

Samples in Turret/Carousel 21 (double/single lament) 20 (triple/double/single lament) 20 (single/double lament)
Abundance sensitivity at 237 from
m/z 238

2 ppm; 20 ppb with RPQ 2 ppm; <10 ppb with WARP lter at
axial Daly/SEM

2 ppm, 20 ppb with lter

Multi-collector Faraday cups 7, movable, option of upto 10 Individually movable and
motorized 9 Faraday cups

Fixed (cups used for various masses
with variable dispersion zoom
optics), upto 16

Acceleration voltage (KV) 10 8 8 to 10
Ion counting (SEM/Daly) SEM and MIC Axial Daly, option for SEM, optional

6 ion counting multipliers
Up to 5 including 3 Daly

Resistors (U) 1011, 1012, 1013 1011 1011, others available
Negative ions Y Y Y
Mass range 3 to 310 3–280, UO2

+ can be monitored in
static mode

3–300

Dynamic range 50 V (+ve ion), 15 V (�ve ion) 10 V (+ve ion), 10 V (�ve ion) 55 V (+ve ion), 12 V (�ve ion)
Switchable ampliers (Y) virtual ampliers Gain stable, but calibration to be

done periodically
Gain calibration required

Magnet Laminated Solid electromagnet Fully laminated, 30 cm radius
Focal plane Inclined at 45� Perpendicular to ion beam path Perpendicular to ion beam path
Pumping system Turbo + ion pumps 700 l s�1 TMP, backed with scroll

pump, 40 l s�1 and 70 l s�1 ion
pumps, optional rear 300 l s�1 TMP
to replace rear 70 l s�1 ion pump

400 l s�1 TMP at source, two 75 l s�1

ion-pump on analyser

Data acquisition (static/dynamic/
multi-dynamic)

Y Y Y

Total evaporation and MTE TE and MTE available TE and MTE available TE available
Country of origin Germany UK UK
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amount ratios in U has been shown to improve signicantly
with dynamic range of eight orders of magnitude, it is impor-
tant that more international laboratories using different
commercially available instruments should evaluate the full
potential of MTE methodology in TIMS. The advent of fully
automated high sensitivity TIMS instruments has made the
operators to treat these machines like black boxes, but these
high sensitivity equipments are capable of providing high
precision in the data and offer a unique opportunity to unravel
the ion source chemistry of different elements when present
alone or in a mixture. The author believes that TIMS will
continue to play a pivotal role for routine applications in safe-
guards as well as for other applications for nuclear fuels
because of the risk and hazards associated with toxic vapors of
actinides generated in the plasma source of ICP-MS. Further,
the problem of carry-over or memory effect in ICP-MS, partic-
ularly during analysis of unknown samples of widely varying
isotope amount ratios, will necessitate the use of TIMS for such
applications. With the further introduction of 1013U resistors in
the ampliers of different Faraday cups, this would further
enhance the sensitivity of TIMS and obviate the need to use SEM
thereby eliminating the problems of (i) inter-calibration of SEM
and Faraday cup, (ii) non-linearity of SEM, and (iii) decrease in
the gain of SEM with time necessitating the replacement of
SEM. The laboratories with access to enriched isotopes of U and
Pu should prepare synthetic mixtures gravimetrically to unravel
the mysteries of even and odd isotope effects in TIMS as
observed for other elements (e.g. Pb).148,149 The interesting and
puzzling phenomenon of reverse fractionation and normal
950 | Anal. Methods, 2016, 8, 942–957
fractionation in TIMS, as observed in case of Nd isotope-
amount ratios150,151 and explained on the basis of mixing of
different domains on the sample lament, needs be critically
evaluated for U and Pu using 233U/238U and 239Pu/244Pu isotope-
amount ratios and at the same time, performing measurements
on other U and Pu isotope amount ratios by gravimetric prep-
aration of synthetic mixtures using enriched isotopes. As
mentioned above, there are concerns about the half-life values
of some of the isotopes e.g. 234U, 230Th which are important for
nuclear forensics as well as geo-chronology.

The novices in the eld of mass spectrometry should not
carry the impression that MC-TIMS orMC-ICPMS is the panacea
to all the requirements in nuclear science and technology. On
the contrary, SIMS is an important analytical tool for particle
analysis, depth proling and surface analysis with high lateral
resolution. RIMS and AMS are the ultra-sensitive mass spec-
trometric techniques used to determine femtogram amounts of
Pu, U and other radioactive elements in food, soil, sea-water
samples, etc. GDMS and LA-ICPMS are equally important to
determine different elements (impurities) in high purity mate-
rials and to characterise highly enriched isotopes used to
prepare certied isotopic reference materials. GC-MS is
a routinely used technique for characterising different extract-
ing agents for nuclear fuel reprocessing and waste handling.
GC-ICPMS and GC-ICPMS/MS are promising for the determi-
nation of non-metals e.g. S, P, O required for various applica-
tions. ESI-MS and MALDI-TOF have great potentials for
speciation studies particularly with reference to nuclear waste
management and studies on the mobility of actinides and other
This journal is © The Royal Society of Chemistry 2016



Table 2 Different Applications of TIMS in Nuclear Science and Technology

Stage Measurement Remarks

Mining Isotopic composition of U Build-up national and international libraries for
data on useful signatures from different mines;
discovering natural reactor

Enrichment 235U/238U isotope amount ratio 235U enrichment R&D studies and at plant
Fuel fabrication Isotopic composition data of U and Pu Chemical quality assurance of fuel materials in

nuclear fuel cycle; to determine fertile and ssile
content

Reactor (for fuel) Burn-up determination, build-up and depletion
of different isotopes of U, Pu

Post-irradiation studies for developing and
verifying theoretical reactor codes; for
developing isotope correlations

Reactor (for moderator/coolant) Isotopic composition and concentration of
boron, Gd

B2O3 mixed with D2O added in PHWRs, periodic
determination required; Gd in coolant for fuel
failure

Reactor for burnable poison Isotopic composition of Gd, Dy etc. For determining depletion in neutron absorbing
isotopes

Reprocessing plant Concentration and isotopic amount ratio data
on U, Pu

Nuclear material accounting, input
accountability at reprocessing plant

Nuclear forensics Isotopic composition, amount, age
determination

Isotope amount ratio data for Th, Pa, U, Np, Pu,
Am, Sr, Nd, Pb, O etc., amount ratio of daughter
to parent

Environmental and biological samples Isotopic composition and amount
(concentration) of actinides

For accidental releases and nuclear tests

R&D studies Half-lives, ssion yields of stable isotopes, cross-
sections etc.

Fundamental nuclear data required for various
applications

Enriched stable and radioactive isotopes Isotopic composition For preparing isotopic reference materials
gravimetrically and for characterisation of
isotopes to be used as spikes in ID-TIMS

Round-robin experiments Isotopic composition and concentration For prociency testing of different international
laboratories
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radioactive elements. TIMS and MC-ICP-MS should be consid-
ered as two complementary analytical techniques in nuclear
science and technology.
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